

Transactions of JASCOME, Vol. 4 (July 2004), Paper No. 04-070910 JASCOME

A TREE DATA STRUCTURE FOR MLS APPROXIMATION OF BOUNDARY

VARIABLES IN HYBRID BNM

Masataka TANAKA 1), Jianming ZHANG 2), Morinobu ENDO 3)
1) Faculty of Engineering, Shinshu University, (Nagano 380-8553, e-mail: dtanaka@gipwc.shinshu-u.ac.jp)

2) Faculty of Engineering, Shinshu University, (Nagano 380-8553, e-mail: zhangjm@homer.shinshu-u.ac.jp)

3) Faculty of Engineering, Shinshu University, (Nagano 380-8553, e-mail: endo@endomoribu.shinshu-u.ac.jp)

By coupling the moving least squares (MLS) approximation with a modified functional, the
hybrid boundary node method (Hybrid BNM) is a boundary only, truly meshless, method.
Like the conventional BEM, the unsymmetrical and dense coefficient matrix limits its
application to small-scale problems. Recently, the Hybrid BNM has been combined with
the fast multipole method (FMM). In the combined approach, however, the MLS
approximation on a surface with a large number of nodes distributed appears to be another
bottleneck for large-scale computation. In this paper, the tree data structure, used in the
hierarchical decomposition of the domain in FMM, is adapted and applied to accelerate the
MLS approximation. Formulations and algorithm are given and a numerical example
presented to demonstrate the efficiency of the proposed approach.

Keywords: Moving least squares, Fast multipole method, Hybrid BNM, Tree data structure

1. Introduction

In numerical solutions of engineering problems, two main
difficulties usually arise. One is the discretization of the
geometry and another computational scale. In the last
decade, a world wide effort has been made to devise a new
class of numerical methods, namely, the meshfree or
meshless methods, aimed at eliminating the human-labor
cost of introducing geometric meshes in complex-shaped
domains. Many kinds of meshless methods have been
proposed so far. The hybrid boundary node method (Hybrid
BNM), suggested by Zhang et al. [1], which combines the
MLS interpolation scheme with the hybrid variational
formulation, not only has the dimensionality advantage of
BEM, but also is a truly meshless method, therefore,
substantially simplifies the discretization task. However, like
the traditional BEM, its system matrix is dense and
unsymmetrical, and demands O(N2) memory and O(N3)
operations. In order to reduce the computational complexity
and memory requirement, we have combined the Hybrid
BNM with the fast multipole method (FMM) [2, 3].

In the combined approach [4] (here called FM-HBNM),
the preconditioned GMRES is employed for solving the
resulting system of equations. At each iteration step of the
GMRES, the matrix-vector multiplication is accelerated by
FMM. An oct-tree data structure is used to hierarchically
subdivide the domain into well-separated cells. Only the
coefficients for near nodes are explicitly computed and
stored. The influences of the nodes far from the observation
point are approximated using multipole expansions. As a
result, both the memory and CPU time required for solving
the set of equations are reduced. However, unlike BEM
using element-based interpolation functions to represent the

approximated solutions of boundary variables, Hybrid BNM
uses moving least squares (MLS) approximation. The MLS
approximation can be costly and may lead to a serious
exhaustion of the computer memory. In order to overcome
this shortcoming, we use a binary tree data structure, similar
to the oct-tree data structure used in FMM, to speed up the
MLS approximation. In this paper, we will focus on
evaluation of the MLS shape functions using the binary tree
data structure, while we will first give brief descriptions of
Hybrid BNM and FM-HBNM.

2. The Hybrid BNM and FM-HBNM

The Hybrid BNM bases on a modified variational principle.
Taking 3-D potential problems as an example (for detailed
discussion see [1]), the functions in the modified variational
principle considered independent are potential field within
the domain u, boundary potential field u and boundary
normal flux q . Consider a domain Ω enclosed by

qu Γ+Γ=Γ with prescribed potential u and normal flux q
at the boundary portions uΓ and qΓ , respectively, the
corresponding variational functional ABΠ is defined as

, ,
1 ()
2 q

A B i iu u d q u u d qud
Ω Γ Γ

Π = Ω − − Γ − Γ∫ ∫ ∫ (1)

where, the boundary potential u~ satisfies the essential
boundary condition, i.e., u~ =u on uΓ .

Suppose that N nodes are distributed on the bounding
surface of the domain, the potential field within the domain
is approximated using fundamental solutions as follows:

1

N
s
I I

I
u u x

=

= ∑ (2)

and hence at a boundary point, the normal flux is given by

1

sN
I

I
I

uq x
n=

∂
=

∂∑ (3)

where s
Iu is the fundamental solution with the source at a

node sI; xI are unknown parameters. For 3-D potential
problems, the fundamental solution can be written as

1 1
4 (,)

s
I

I

u
r Qπ

=
s

 (4)

where Q is a field point; r(Q, sI) is the distance between Q
and sI.

The boundary potential field u and boundary normal flux
q are interpolated by the MLS [1].

1

ˆ() ()
N

I I
I

u u
=

= Φ∑s s (5)

1

ˆ() ()
N

I I
I

q q
=

= Φ∑s s (6)

In the foregoing equations, ()IΦ s is the shape function of
MLS approximation; ˆIu and ˆIq are nodal values of
potential and normal flux, respectively.

Taking the local sub-domain around each node into
account, the stationary conditions can be obtained by taking
variations in Eq. (1) with respect to the independent
variables. This gives the following set of equations:

ˆ=Ux Hu (7)
ˆ=Vx Hq (8)

where U, V and H are defined as:
()

J
s

s
IJ I JU u v Q d

Γ
= Γ∫ (9)

()
J
s

s
I

IJ J
uV v Q d
nΓ

∂
= Γ

∂∫ (10)

() ()
J
s

IJ I JH v Q d
Γ

= Φ Γ∫ s (11)

where vJ is a weight function and s is a boundary point, J
sΓ is

a regularly shaped local region around a given node sJ in the
parametric representation space of the boundary surface.
Therefore, the integrals in Eqs. (9), (10) and (11) can be
calculated without using boundary elements (for details refer
to [1]).

For a well-posed problem, either ˆIu or ˆIq is known at a
node sI on the boundary, thus Eqs. (7) and (8) can be solved
for unknown parameters x. Then, by back-substitution into
Eqs. (7) and (8), the boundary unknowns are obtained for
both potentials and normal fluxes by solving Eqs. (7) and (8)
with H being the coefficient matrix.

The coefficient matrices U and V are dense and
unsymmetrical. It requires O(N2) memory to store them and
O(N3) CPU time to solve them if a direct solver is employed.
If we use an iterative solver, such as GMRES, the N2 cost of
forming the dense matrix-vector product in the system of
equations will dominate the total cost. In the case of Eqs. (7)
and (8), the matrix-vector product is equivalent to evaluating
the potentials or their derivates at N nodes, using Eqs. (2)
and (3). Therefore, it is possible to reduce the cost of
GMRES by accelerating the potential calculation.

In FM-HBNM, we use a constructed hierarchy of boxes to
refine the computational domain into smaller and smaller
regions. At refinement level 0, we have the entire

computational domain. Refinement level l+1 is obtained
recursively from level l by subdivision of each into eight
equal parts. This yields a tree structure, where the eight
boxes at level l+1 obtained by subdivision of a box at level l
are considered its children. We stop the box subdivision if
the number of nodes included in the box is smaller than a
given value. If a child box contains no node, we delete it.
We call a childless box a leaf and two boxes neighbors if
they are at the same level and share at least a vertex.

Given evaluation point included in a leaf and using the tree
data structure described above, we can divide sum (2) and (3)
into two parts. Part 1 is the sum of the contributions of the
nodes contained in the neighbors of the leaf (these nodes
called near nodes), and part 2 that of the nodes that are
outside all the neighbors (these nodes called far nodes). We
compute the sum for the near nodes directly, while do the
summation for the far nodes by means of fast multipole
expansions at a cost proportional to N at each iteration step
(for details see [4]). Since the coefficients in matrices U and
V are explicitly computed and stored for near nodes, only,
and the computational cost is proportional to N, the overall
complexity for solving Eqs. (7) and (8) is of order N.

From the above discussion, we can see that FM-HBNM
only concerns matrices U and V, while leaves matrix H
intact. There are two usages of H in Hybrid BNM. One is
computing the right hand side vector of Eqs. (7) and (8),
while the other is solving the boundary unknowns û and
q̂ by Eqs. (7) and (8) after x has been solved. Since the MLS
approximation in Hybrid BNM is conducted on individual
panels separately, the matrix H, unlike U and V, is
diagonally blocked. Even so, when a panel with a large
number of nodes located, the size of the corresponding block
may be extremely large, and the evaluation of the shape
functions in Eq. (11) can be expensive. In order to
circumvent this problem, we use a binary tree data structure
to speed up MLS approximation and reduce the memory
requirements for storing matrix H.

3. Original MLS algorithm

In Hybrid BNM, the MLS approximation is required on the
bounding surface, only, as the nodes lie only on the
boundary of a 3-D body. It is assumed that the bounding
surface of a 3-D body is a union of piecewise smooth
segments. We call these segments panels, and perform MLS
approximation on each panel separately.

In Reference [1], we have proposed a general MLS
approximation algorithm on an arbitrary panel. For a panel
over which randomly located a number of nodes{ }Is , I=1,
2, …, n, the MLS interpolants for a boundary variable f(s) is
defined by

1

() () () () ()
m

j j
j

f p a
=

= =∑ Ts s s p s a s (12)

where s is a field point with parametric coordinates (s1, s2),
defined in the range [0, 1]; and pj(s), j=1, 2, …, m are
monomials in (s1, s2). The monomials pj(s) provide the
intrinsic polynomial bases for f(s). In the study, a quadratic
background basis is used, i.e.

2 2
1 2 1 1 2 2() [1, , , , ,], 6s s s s s s m= =Tp s (13)

The coefficient vectors a(s) and b(s) are determined by
minimizing a weighted discrete L2 norm, defined as

2

1

ˆ() () () ()
n

I
I I

I
J w f

=

 = − ∑ Ts s p s a s (14)

where wI(s) is a weight function corresponding to node sI
and Îf is the nodal value.

Solving for a(s) and b(s) by minimizing J in Eq. (14), and
substituting them into Eq. (12) gives a relation which can be
written in the forms with interpolation functions similar to
those used in FEM, as follows:

1

ˆ() ()
n

I I
I

f f
=

= Φ∑s s (15)

where the shape functions is expressed as
1

1

() () () ()
m

I j jI
j

p A B−

=

 Φ = ∑s s s s (16)

with matrices ()A s and ()B s defined by

1

() () () ()
n

I I
I

I
A w

=

= ∑ Ts s p s p s (17)

and
1 2

1 2() () (), () (), , () ()n
nB w w w = s s p s s p s s p s (18)

The MLS approximation is well-defined only when the
matrix A(s) in Eq. (17) is non-singular.

Choosing a proper weight function is an important aspect
in a successful implementation of MLS approximation. The
choice of weight functions and the consequences of a choice
are discussed in detail elsewhere [5]. In the study, we use
Gaussian weight function. The Gaussian weight function
corresponding to a node sI can be written by

2 2

2

ˆexp[(/)] exp[(/)] ˆ,0ˆ1 exp[(/)]()
ˆ0,

I I I I
I I

I II

I I

d c d c d d
d cw

d d

 − − −
≤ ≤

− −=

≥

s (19)

where cI is a constant controlling the shape of the weight
function, and Id̂ is the size of the support for the weight
function wI. It can be seen from the above equation that the
weight function has a compact support determined by the
parameter Id̂ . The shape of the compact support is usually
chosen to be circle in the meshless method literatures, while
in this study, we choose ellipse for the shape of the compact
support with Id̂ being the half-length of major axis of the
ellipse. Denoting the half-length of minor axis by ˆ

Id ′ , we
have the following expression for dI:

2
2 2

1 1 2 22

ˆ
() ()ˆ

I II
I

I

dd s s s s
d

= − + −
′

 (20)

From Eqs. (16) and (18), it is seen that () 0IΦ =s in case
wI(s)=0. The fact that ()IΦ s vanishes for s not in the
support of node sI preserves the local character of the MLS
approximation. In order to retain the local character, we
should use small values for Id̂ and ˆ

Id ′ . On the other hand,

however, to ensure the regularity of A(s), Id̂ and ˆ
Id ′ should

be chosen in such a way that they are large enough to have a
sufficient number of nodes to be covered in the domain of
definition of every sample point. In this study, we choose

Id̂ and ˆ
Id ′ such that 4 ~ 8m m nodes are included in the

support of a node.
At a panel, we compute the shape functions according to

the following routine:
1. Choose a finite number of nodes on the panel.
2. Determine the support sizes, Id̂ and ˆ

Id ′ , of the weight
function for each node.

3. Loop over all nodes located on the panel
 determine the nodes sI that wI(s)>0;
 calculate the right hand side of Eq. (17);
 add contributions to A(s).

4. Solve the inversion of A(s).
5. Loop over all nodes located on the panel. For each node

sI that wI(s)>0, calculate wI(s)p(sI) and then ()IΦ s using
Eqs. (18) and (16).

4. Binary tree data structure for MLS approximation

In BEM, the number of shape functions for an evaluation
point equals to the number of nodes of an element, while in
Hybrid BNM, the number of MLS shape functions equals to
the total number of nodes on the panel. Although most of the
MLS shape functions equal to zero due to the compact
support of the weight function of each node, we cannot
determine before computation which of them are zero. The
reason is, in the input data structure in Hybrid BNM, there is
no information of connectivity between the nodes. This
leads to two drawbacks in the original MLS approximation
algorithm:

1. Evaluation of the shape functions for one field point
needs to loop over all the nodes located on the panel to
check the condition, wI(s)>0. This check is time
consuming especially when the total number of nodes is
very large.

2. The locations of the non-zero entries in every row of
matrix H (see Eq. (11)) depend upon the nodes located
inside the domain of influence of the source node. If the
shape and size of the domain of influence for all of the
nodes are taken to be the same as each other, it may be
easy to see that the resulting block of H becomes banded
with non-zero entries being symmetrically and sparsely
located with unsymmetrical values. However, since we
cannot determine the bandwidth in advance, we have to
store the entire block in memory. This may lead to an
exhaustion of computer memory.

 In order to overcome the two shortcomings, we adapt the
tree data structure used in FMM and apply it to MLS
approximation. Because the MLS approximation in Hybrid
BNM for 3-D problems is carried out on 2-D panels, we use
a binary tree data structure to represent a hierarchical
partitioning of a panel with cells. Because further that the
panel is represented in parametric form, we subdivide the
panel in parametric space. We associate a cell with the
following parameters:

 Center.s1 denotes the value of parametric coordinate of
the center of the cell in s1 direction.

 Center.s2 denotes the value of parametric coordinate of
the center of the cell in s2 direction.

 H.s1 denotes the side length of the cell in s1 direction.
 H.s2 denotes the side length of the cell in s2 direction.

 Dmax.s1 denotes the maximum value of Id̂ among the
nodes included in the cell.

 Dmax.s2 denotes the maximum value of ˆ
Id ′ among

the nodes included in the cell.
Consider the biggest cell, which contains the entire panel
and refer this cell as the level 0 or root cell. Given a
subdivision S of the computation cell, if H.s1 is bigger than
Dmax.s1, we subdivide the cell S into two equal cells in s1
direction; and if H.s2 is bigger than Dmax.s2, we subdivide
the cell S into two equal cells in s2 direction. This process is
recursively repeated down from the root cell to some finest
level. We refer the cells at the finest level as leaves. In the
next step, we create a neighbor list for each leaf. Taking a
leaf L into account and looping over all other leaves Li, we
consider Li to be L’s neighbor and add it to L’s neighbor list,
if the distances between their centers in both s1 and s2
directions are smaller than Dmax.s1 and Dmax.s2 associated
with Li, respectively. A leaf is also a neighbor of itself. Now,
instead of creating an n×n square block of H, we associate
each leaf a j×k sub-matrix hjk, where j denotes the number of
nodes included in the leaf; and k denotes the number of
nodes included in the neighbors of the leaf. This scheme
saves the memory considerably.

With the binary tree data structure, the routine for
computing the shape functions changes to the following
steps.

1. Choose a finite number of nodes on the panel.
2. Determine the support sizes, Id̂ and ˆ

Id ′ , of the weight
function for each node.

3. Create the binary tree data structure to subdivide the
panel into hierarchical cells in the parametric space.

4. Find the leaf Lc that includes the evaluation point s.
5. Loop over the nodes included in the neighborhood of Lc

 determine the nodes sI that wI(s)>0;
 calculate the right hand side of Eq. (17);
 add contributions to A(s).

6. Solve the inversion of A(s).
7. Loop over all the nodes included in the neighborhood of

Lc. For each node sI that wI(s)>0, calculate wI(s)p(sI) and
then ()IΦ s using Eqs. (18) and (16).

 In the above algorithm, the loop for checking the weight
functions contains only the nodes that are in the
neighborhood of a leaf. When the total number of nodes
located at the panel is large, the CPU time saved by the new
algorithm will be obvious.

5. Numerical results

The proposed technique has been implemented in a
computer code written in C++, and tested with a cube.
Computations for a variety of number of nodes uniformly
scattered on the faces are performed on a desktop computer
with an Intel Celeron CPU (2.40GHz). Following Reference
[5], the support sizes of the weight function, Id̂ and ˆ

Id ′ in
Eq. (20), are chosen to be 4.0h1 and 4.0h2, with h1 and h2
being the minimum distances between the neighbouring
nodes in s1 and s2 directions, respectively. For comparison,
the models have also been calculated using the original FM-
HBNM in the cases where it is capable of solving them.
The CPU time (in second) and memory sizes (in MB) for

computing and storing matrix H required by the new and
original algorithm, respectively, are presented in Figure 1.
From Figure 1, it is seen that the new algorithm is much
faster than the original algorithm and uses less memory.
Computations by means of the original algorithm are
restricted to 21600 nodes (due to hardware limitation), while
the new algorithm is capable of solving problems with the
total number of degrees of freedom up to 150000.

Figure 1 Memory usage and CPU timing results

Conclusions

This paper presents an enhanced implementation of MLS
approximation of boundary variables with a binary tree data
structure. The new implementation decreases the execution
time with lower memory requirement, thus significantly
increases the size of problem that can be solved within
available computer resources.

The new algorithm can be exploited in any meshless
method that involves MLS approximation.

Acknowledgements

This work was supported by the CLUSTER of Ministry of
Education, Culture, Sports, Science and Technology (Japan).

References

1. Zhang, J.M., Tanaka, Masa., Matsumoto, T., Meshless
analysis of potential problems in three dimensions with
the hybrid boundary node method, Int. J. Num. Meth.
Eng., Vol. 59 (2004), pp. 1147-1160.

2. Nishida, T., and Hayami, K., Application of the fast
multipole method to the 3D BEM analysis of electron
guns, In Marchettia, M., Brebbia, C.A., and Aliabadi,
M.H., Eds., Boundary Elements XIX, Computational
Mechanics Publications (1997), pp. 613–622.

3. Yoshida K., Nishimura N., Kobayashi S., Application of
fast multipole Galerkin boundary integral equation
method to elastostatic crack problems in 3D, Int. J. Num.
Meth. Eng., Vol. 50 (2001), pp. 525-547.

4. Zhang J.M., Tanaka Masa., Endo M., The hybrid
boundary node method accelerated by fast multipole
method for 3D potential problems. Int. J. Num. Meth.
Eng., to be submitted (2004).

5. Atluri S.N., Zhu T., A new meshless local Petrov-
Galerkin approach in computational mechanics.
Computational Mechanics, Vol. 22 (1998), pp. 117-127.

