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By coupling the moving least squares (MLS) approximation with a modified functional, the 
hybrid boundary node method (Hybrid BNM) is a boundary only, truly meshless, method. 
Like the conventional BEM, the unsymmetrical and dense coefficient matrix limits its 
application to small-scale problems. Recently, the Hybrid BNM has been combined with 
the fast multipole method (FMM). In the combined approach, however, the MLS 
approximation on a surface with a large number of nodes distributed appears to be another 
bottleneck for large-scale computation.  In this paper, the tree data structure, used in the 
hierarchical decomposition of the domain in FMM, is adapted and applied to accelerate the 
MLS approximation. Formulations and algorithm are given and a numerical example 
presented to demonstrate the efficiency of the proposed approach. 
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1. Introduction 

In numerical solutions of engineering problems, two main 
difficulties usually arise. One is the discretization of the 
geometry and another computational scale. In the last 
decade, a world wide effort has been made to devise a new 
class of numerical methods, namely, the meshfree or 
meshless methods, aimed at eliminating the human-labor 
cost of introducing geometric meshes in complex-shaped 
domains. Many kinds of meshless methods have been 
proposed so far. The hybrid boundary node method (Hybrid 
BNM), suggested by Zhang et al. [1], which combines the 
MLS interpolation scheme with the hybrid variational 
formulation, not only has the dimensionality advantage of 
BEM, but also is a truly meshless method, therefore, 
substantially simplifies the discretization task. However, like 
the traditional BEM, its system matrix is dense and 
unsymmetrical, and demands O(N2) memory and O(N3) 
operations. In order to reduce the computational complexity 
and memory requirement, we have combined the Hybrid 
BNM with the fast multipole method (FMM) [2, 3]. 

In the combined approach [4] (here called FM-HBNM), 
the preconditioned GMRES is employed for solving the 
resulting system of equations. At each iteration step of the 
GMRES, the matrix-vector multiplication is accelerated by 
FMM. An oct-tree data structure is used to hierarchically 
subdivide the domain into well-separated cells. Only the 
coefficients for near nodes are explicitly computed and 
stored. The influences of the nodes far from the observation 
point are approximated using multipole expansions. As a 
result, both the memory and CPU time required for solving 
the set of equations are reduced. However, unlike BEM 
using element-based interpolation functions to represent the 

approximated solutions of boundary variables, Hybrid BNM 
uses moving least squares (MLS) approximation. The MLS 
approximation can be costly and may lead to a serious 
exhaustion of the computer memory. In order to overcome 
this shortcoming, we use a binary tree data structure, similar 
to the oct-tree data structure used in FMM, to speed up the 
MLS approximation. In this paper, we will focus on 
evaluation of the MLS shape functions using the binary tree 
data structure, while we will first give brief descriptions of 
Hybrid BNM and FM-HBNM. 

2. The Hybrid BNM and FM-HBNM 

The Hybrid BNM bases on a modified variational principle. 
Taking 3-D potential problems as an example (for detailed 
discussion see [1]), the functions in the modified variational 
principle considered independent are potential field within 
the domain u, boundary potential field u  and boundary 
normal flux q . Consider a domain Ω  enclosed by 

qu Γ+Γ=Γ  with prescribed potential u  and normal flux q  
at the boundary portions uΓ and qΓ , respectively, the 
corresponding variational functional ABΠ  is defined as 
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where, the boundary potential u~  satisfies the essential 
boundary condition, i.e., u~ =u on uΓ . 

Suppose that N nodes are distributed on the bounding 
surface of the domain, the potential field within the domain 
is approximated using fundamental solutions as follows: 
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and hence at a boundary point, the normal flux is given by 
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where s
Iu  is the fundamental solution with the source at a 

node sI; xI are unknown parameters. For 3-D potential 
problems, the fundamental solution can be written as 

1 1
4 ( , )

s
I

I

u
r Qπ

=
s

                       (4) 

where Q is a field point; r(Q, sI) is the distance between Q 
and sI. 

The boundary potential field u  and boundary normal flux 
q  are interpolated by the MLS [1]. 
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In the foregoing equations, ( )IΦ s  is the shape function of 
MLS approximation; ˆIu  and ˆIq  are nodal values of 
potential and normal flux, respectively. 

Taking the local sub-domain around each node into 
account, the stationary conditions can be obtained by taking 
variations in Eq. (1) with respect to the independent 
variables. This gives the following set of equations: 

ˆ=Ux Hu                                    (7) 
ˆ=Vx Hq                                    (8) 

where U, V and H are defined as: 
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where vJ is a weight function and s is a boundary point, J
sΓ is 

a regularly shaped local region around a given node sJ in the 
parametric representation space of the boundary surface. 
Therefore, the integrals in Eqs. (9), (10) and (11) can be 
calculated without using boundary elements (for details refer 
to [1]). 

For a well-posed problem, either ˆIu  or ˆIq  is known at a 
node sI on the boundary, thus Eqs. (7) and (8) can be solved 
for unknown parameters x. Then, by back-substitution into 
Eqs. (7) and (8), the boundary unknowns are obtained for 
both potentials and normal fluxes by solving Eqs. (7) and (8) 
with H being the coefficient matrix. 

The coefficient matrices U and V are dense and 
unsymmetrical. It requires O(N2) memory to store them and 
O(N3) CPU time to solve them if a direct solver is employed. 
If we use an iterative solver, such as GMRES, the N2 cost of 
forming the dense matrix-vector product in the system of 
equations will dominate the total cost. In the case of Eqs. (7) 
and (8), the matrix-vector product is equivalent to evaluating 
the potentials or their derivates at N nodes, using Eqs. (2) 
and (3). Therefore, it is possible to reduce the cost of 
GMRES by accelerating the potential calculation. 

In FM-HBNM, we use a constructed hierarchy of boxes to 
refine the computational domain into smaller and smaller 
regions. At refinement level 0, we have the entire 

computational domain. Refinement level l+1 is obtained 
recursively from level l by subdivision of each into eight 
equal parts. This yields a tree structure, where the eight 
boxes at level l+1 obtained by subdivision of a box at level l 
are considered its children. We stop the box subdivision if 
the number of nodes included in the box is smaller than a 
given value. If a child box contains no node, we delete it. 
We call a childless box a leaf and two boxes neighbors if 
they are at the same level and share at least a vertex. 

Given evaluation point included in a leaf and using the tree 
data structure described above, we can divide sum (2) and (3) 
into two parts. Part 1 is the sum of the contributions of the 
nodes contained in the neighbors of the leaf (these nodes 
called near nodes), and part 2 that of the nodes that are 
outside all the neighbors (these nodes called far nodes). We 
compute the sum for the near nodes directly, while do the 
summation for the far nodes by means of fast multipole 
expansions at a cost proportional to N at each iteration step 
(for details see [4]). Since the coefficients in matrices U and 
V are explicitly computed and stored for near nodes, only, 
and the computational cost is proportional to N, the overall 
complexity for solving Eqs. (7) and (8) is of order N. 

From the above discussion, we can see that FM-HBNM 
only concerns matrices U and V, while leaves matrix H 
intact. There are two usages of H in Hybrid BNM. One is 
computing the right hand side vector of Eqs. (7) and (8), 
while the other is solving the boundary unknowns û  and 
q̂ by Eqs. (7) and (8) after x has been solved. Since the MLS 
approximation in Hybrid BNM is conducted on individual 
panels separately, the matrix H, unlike U and V, is 
diagonally blocked. Even so, when a panel with a large 
number of nodes located, the size of the corresponding block 
may be extremely large, and the evaluation of the shape 
functions in Eq. (11) can be expensive.  In order to 
circumvent this problem, we use a binary tree data structure 
to speed up MLS approximation and reduce the memory 
requirements for storing matrix H.  

3. Original MLS algorithm 

In Hybrid BNM, the MLS approximation is required on the 
bounding surface, only, as the nodes lie only on the 
boundary of a 3-D body. It is assumed that the bounding 
surface of a 3-D body is a union of piecewise smooth 
segments. We call these segments panels, and perform MLS 
approximation on each panel separately. 

In Reference [1], we have proposed a general MLS 
approximation algorithm on an arbitrary panel. For a panel 
over which randomly located a number of nodes{ }Is , I=1, 
2, …, n, the MLS interpolants for a boundary variable f(s) is 
defined by 
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where s is a field point with parametric coordinates (s1, s2), 
defined in the range [0, 1]; and pj(s), j=1, 2, …, m are 
monomials in (s1, s2). The monomials pj(s) provide the 
intrinsic polynomial bases for f(s). In the study, a quadratic 
background basis is used, i.e.  
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The coefficient vectors a(s) and b(s) are determined by 
minimizing a weighted discrete L2 norm, defined as 
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where wI(s) is a weight function corresponding to node sI 
and Îf  is the nodal value. 

Solving for a(s) and b(s) by minimizing J in Eq. (14), and 
substituting them into Eq. (12) gives a relation which can be 
written in the forms with interpolation functions similar to 
those used in FEM, as follows: 
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where the shape functions is expressed as 
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with matrices ( )A s  and ( )B s  defined by 
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The MLS approximation is well-defined only when the 
matrix A(s) in Eq. (17) is non-singular. 

Choosing a proper weight function is an important aspect 
in a successful implementation of MLS approximation. The 
choice of weight functions and the consequences of a choice 
are discussed in detail elsewhere [5]. In the study, we use 
Gaussian weight function. The Gaussian weight function 
corresponding to a node sI can be written by 
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where cI is a constant controlling the shape of the weight 
function, and Id̂  is the size of the support for the weight 
function wI. It can be seen from the above equation that the 
weight function has a compact support determined by the 
parameter Id̂ .  The shape of the compact support is usually 
chosen to be circle in the meshless method literatures, while 
in this study, we choose ellipse for the shape of the compact 
support with Id̂  being the half-length of major axis of the 
ellipse. Denoting the half-length of minor axis by ˆ

Id ′ , we 
have the following expression for dI: 
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From Eqs. (16) and (18), it is seen that ( ) 0IΦ =s  in case 
wI(s)=0. The fact that ( )IΦ s  vanishes for s not in the 
support of node sI preserves the local character of the MLS 
approximation. In order to retain the local character, we 
should use small values for Id̂  and ˆ

Id ′ . On the other hand, 

however, to ensure the regularity of A(s), Id̂  and ˆ
Id ′  should 

be chosen in such a way that they are large enough to have a 
sufficient number of nodes to be covered in the domain of 
definition of every sample point. In this study, we choose 

Id̂  and ˆ
Id ′  such that 4 ~ 8m m  nodes are included in the 

support of a node. 
At a panel, we compute the shape functions according to 

the following routine: 
1. Choose a finite number of nodes on the panel. 
2. Determine the support sizes, Id̂  and ˆ

Id ′ , of the weight 
function for each node. 

3. Loop over all nodes located on the panel 
 determine the nodes sI that wI(s)>0; 
 calculate the right hand side of Eq. (17); 
 add contributions to A(s). 

4. Solve the inversion of A(s). 
5. Loop over all nodes located on the panel. For each node 

sI that wI(s)>0, calculate wI(s)p(sI) and then ( )IΦ s  using 
Eqs. (18) and (16). 

4. Binary tree data structure for MLS approximation 

In BEM, the number of shape functions for an evaluation 
point equals to the number of nodes of an element, while in 
Hybrid BNM, the number of MLS shape functions equals to 
the total number of nodes on the panel. Although most of the 
MLS shape functions equal to zero due to the compact 
support of the weight function of each node, we cannot 
determine before computation which of them are zero. The 
reason is, in the input data structure in Hybrid BNM, there is 
no information of connectivity between the nodes. This 
leads to two drawbacks in the original MLS approximation 
algorithm: 

1. Evaluation of the shape functions for one field point 
needs to loop over all the nodes located on the panel to 
check the condition, wI(s)>0. This check is time 
consuming especially when the total number of nodes is 
very large. 

2. The locations of the non-zero entries in every row of 
matrix H (see Eq. (11)) depend upon the nodes located 
inside the domain of influence of the source node. If the 
shape and size of the domain of influence for all of the 
nodes are taken to be the same as each other, it may be 
easy to see that the resulting block of H becomes banded 
with non-zero entries being symmetrically and sparsely 
located with unsymmetrical values. However, since we 
cannot determine the bandwidth in advance, we have to 
store the entire block in memory. This may lead to an 
exhaustion of computer memory. 

 In order to overcome the two shortcomings, we adapt the 
tree data structure used in FMM and apply it to MLS 
approximation. Because the MLS approximation in Hybrid 
BNM for 3-D problems is carried out on 2-D panels, we use 
a binary tree data structure to represent a hierarchical 
partitioning of a panel with cells. Because further that the 
panel is represented in parametric form, we subdivide the 
panel in parametric space. We associate a cell with the 
following parameters: 

 Center.s1 denotes the value of parametric coordinate of 
the center of the cell in s1 direction. 

 Center.s2 denotes the value of parametric coordinate of 
the center of the cell in s2 direction. 

 H.s1 denotes the side length of the cell in s1 direction. 
 H.s2 denotes the side length of the cell in s2 direction. 



 

 Dmax.s1 denotes the maximum value of  Id̂  among the 
nodes included in the cell. 

 Dmax.s2 denotes the maximum value of  ˆ
Id ′   among 

the nodes included in the cell. 
Consider the biggest cell, which contains the entire panel 
and refer this cell as the level 0 or root cell. Given a 
subdivision S of the computation cell, if H.s1 is bigger than 
Dmax.s1, we subdivide the cell S into two equal cells in s1 
direction; and if H.s2 is bigger than Dmax.s2, we subdivide 
the cell S into two equal cells in s2 direction. This process is 
recursively repeated down from the root cell to some finest 
level. We refer the cells at the finest level as leaves.  In the 
next step, we create a neighbor list for each leaf. Taking a 
leaf L into account and looping over all other leaves Li, we 
consider Li to be L’s neighbor and add it to L’s neighbor list, 
if the distances between their centers in both s1 and s2 
directions are smaller than Dmax.s1 and Dmax.s2 associated 
with Li, respectively. A leaf is also a neighbor of itself. Now, 
instead of creating an n×n square block of H, we associate 
each leaf a j×k sub-matrix hjk, where j denotes the number of 
nodes included in the leaf; and k denotes the number of 
nodes included in the neighbors of the leaf. This scheme 
saves the memory considerably. 

With the binary tree data structure, the routine for 
computing the shape functions changes to the following 
steps. 

1. Choose a finite number of nodes on the panel. 
2. Determine the support sizes, Id̂  and ˆ

Id ′ , of the weight 
function for each node. 

3. Create the binary tree data structure to subdivide the 
panel into hierarchical cells in the parametric space. 

4. Find the leaf Lc that includes the evaluation point s. 
5. Loop over the nodes included in the neighborhood of Lc 

 determine the nodes sI that wI(s)>0; 
 calculate the right hand side of Eq. (17); 
 add contributions to A(s). 

6. Solve the inversion of A(s). 
7. Loop over all the nodes included in the neighborhood of 

Lc. For each node sI that wI(s)>0, calculate wI(s)p(sI) and 
then ( )IΦ s  using Eqs. (18) and (16). 

 In the above algorithm, the loop for checking the weight 
functions contains only the nodes that are in the 
neighborhood of a leaf. When the total number of nodes 
located at the panel is large, the CPU time saved by the new 
algorithm will be obvious. 

5. Numerical results 

The proposed technique has been implemented in a 
computer code written in C++, and tested with a cube. 
Computations for a variety of number of nodes uniformly 
scattered on the faces are performed on a desktop computer 
with an Intel Celeron CPU (2.40GHz). Following Reference 
[5], the support sizes of the weight function, Id̂  and ˆ

Id ′  in 
Eq. (20), are chosen to be 4.0h1 and 4.0h2, with h1 and h2 
being the minimum distances between the neighbouring 
nodes in s1 and s2 directions, respectively. For comparison, 
the models have also been calculated using the original FM-
HBNM in the cases where it is capable of solving them.  
The CPU time (in second) and memory sizes (in MB) for 

computing and storing matrix H required by the new and 
original algorithm, respectively, are presented in Figure 1. 
From Figure 1, it is seen that the new algorithm is much 
faster than the original algorithm and uses less memory. 
Computations by means of the original algorithm are 
restricted to 21600 nodes (due to hardware limitation), while 
the new algorithm is capable of solving problems with the 
total number of degrees of freedom up to 150000. 

 
Figure 1  Memory usage and CPU timing results 

Conclusions 

This paper presents an enhanced implementation of MLS 
approximation of boundary variables with a binary tree data 
structure. The new implementation decreases the execution 
time with lower memory requirement, thus significantly 
increases the size of problem that can be solved within 
available computer resources. 

The new algorithm can be exploited in any meshless 
method that involves MLS approximation. 
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